UOP Polybed™ Pressure Swing Adsorption (PSA) Systems in China
Dependable pure hydrogen with greater than 99.8 percent on-stream reliability

Increase your plant lifecycle economic returns with UOP’s leading hydrogen purification technology. With more than 900 units in operation around the world, UOP’s Polybed PSA systems are commercially proven as the source for high-purity hydrogen.

Introduction

Hydrogen is a key component for the operation of modern refineries and petrochemical plants. Whether hydrogen is generated or produced as a by-product, it can be recovered and purified to be used in downstream processing. UOP technologies can be used in many applications to recover and purify valuable hydrogen. The choice of hydrogen purification and recovery technology will depend on your feed stream characteristics and your processing objectives.

UOP invented and developed the Polybed PSA technology more than 45 years ago. It has since become the leading hydrogen purification technology in many industries for many applications — delivering over 900 Polybed PSA systems worldwide, in over 70 countries, processing over 40 different types of feedstock. Polybed PSA technology has evolved as the leader in many gas purification applications, including:

- Steam Reformers (Hydrogen Plants)
- Refinery Streams (Platforming, Unionfining, Unicracking)
- Ethylene Off-Gas
- Methanol Off-Gas
- Partial Oxidation / Syngas
- Coke Oven Gas
- Ammonia Off-Gas
- Chlorine Off-Gas
- Styrene Off-Gas
- Oleflex Off-Gas
- Steel Industry Gas (DRI)

Reliable process

UOP Polybed PSA systems offer increased reliability to obtain the highest purity hydrogen. The system allows hydrogen to be recovered and purified up to 99.9999 percent purity to meet downstream processing requirements.

The PSA process is based on the principle that adsorbents are capable of selectively trapping impurities. The impurities are captured in a fixed-bed adsorber at high pressure and released by "swinging" the adsorber from the feed to the tail gas pressure and using a high-purity purge to regenerate the bed. Hydrogen is recovered and impurities flow out with the tail gas, typically to a fuel gas header.

Polybed PSA systems are skid-mounted, modular units that come complete with vessels, valve skid, adsorbents, control systems and embedded process technology.
Increased uptime for higher profitability

UOP PSA systems are designed to provide consistent hydrogen recovery rates and on-stream reliability to keep operating costs low and increase profitability. Key benefits include:

- Greater than 99.8 percent on-stream reliability, saving customers RMB 2-4 million per day of downtime avoided, and an automatic switchover designed so that the failure of a single component will not cause a shutdown
- Proprietary adsorbents that can improve hydrogen recovery by 1 percent, potentially increasing customers’ profitability by RMB 8.8-17.5 million per year
- 100 percent production in the first switchover and 95 percent production in the second switchover versus only 50 percent production for competitor units, potentially saving customers RMB 0.95-1.9 million per day
- Superior technical service, potentially saving customers RMB 2-4 million per day of downtime avoided

Basis: PSA producing 100,000 Nm³/hr H₂

H₂ price basis: RMB 10,000/MT from coal – RMB 20,000/MT from naphtha

Local facilities

UOP operates on the ground in China with manufacturing, sales and technical support at-hand for every customer. UOP Processes International, located in Beijing, offers a regional team with local expertise. In 1988, Shanghai UOP Ltd.

Beijing
UOP Processes International
Lido Place A2-418
Jichang Road, Jiang-Tai Road
ChaoYang District
Beijing, China 100004
Phone: +86-10-6437-6763

Shanghai
Shanghai UOP Ltd.
Manufacturing
500 Wen Jing Road
Minhang
Shanghai, 200245 China
Phone: +86-21-6430-2370

Adsorbents Sales
Suite 1203, Huiyin Plaza, South
2088 Hua Shan Rd.
Shanghai 200030 China
Phone: +86-21-54070555

For more information

For more information please contact your UOP representative or visit us online at www.uop.com.